TOTAL SYNTHESIS OF n_a -METHYL- Δ^{18} -ISOROUMIDINE, A POSSIBLE PRECURSOR OF THE KOUMINE TYPE INDOLE ALKALOIDS^[1]

Zhujin LIU^{*} Feng XU Shanghai Institute of Organic Chemistry, Academia Sinica Shanghai 200032, China

Abstract A novel total synthesis of title compound 3 is described.

The recent appearance of a communication from Magnus et al. on the total synthesis of (+)koumidine 1 and (+)taberpsychine $2^{[2]}$ prompts us to report our recent result on the total synthesis of the title compound 3. Based on the transformation of (-)taberpsychine to natural (-)koumine $4^{[3]}$ and ready access of the former from koumidine $^{[2,4]}$, 3 might be considered as a key intermediate for the total synthesis of N_a-methyl koumine or, after demethylation, of koumine itself, inspite of the presence of a vinyl side chain in 3 instead of an ethylidene side chain in 1.

With our recently developed methodology of the asymmetric synthesis of 1,2,3,4-tetrahydro- β -carbolines in hand^[5], L-tryptophan 5 was used as the starting materical for our approach. Treatment of the methyl ester of L-tryptophan 6, which was obtained by exposure of L-tryptophan 5 to SOCl₂/MeOH/r.t./2d^[6], with succinic half methyl ester acid chloride(Py/r.t./2d) afforded amide 7 in 81% yield, [\propto]_D+80^O(cl.1 in CHCl₃). The labile β -carboline 9 was obtained through a Bischler-Napieralski reaction(POCl₃/ 60^OC/10h), followed by hydrogenolysis of the resulting 8 (PtO₂/EtOH) in 99% yield^[7]. N_b-alkylation of 9 to give 10 was achieved by treatment with 1-bromo-4-acetoxy-Z-butene-2 or 1-bromo-E-butene-2/NaHCO₃/CH₃CN. Exposure of 10 to CH₂=CHOEt/PTS(cat.)/30^OC afforded the N_a-protected tetrahydro- β -carboline 11. Then the Dieckmann cyclizations gave the expected β -keto esters 12.

After the failure to complete the desired sarpagine ring system via a

Reagents and Conditions: a: $SOCl_2$, MeOH, rt, 2d. b: $MeOOCCH_2CH_2COCl$, Py, rt. 2d. c: $POCl_3$, $60^{\circ}C$, 10h. d: H_2 , PtO_2 ; EtOH. e: $BrCH_2CH=CHCH_2OAc(2)$ or $BrCH_2CH=CHCH_3(E)$, $NaHCO_3$, CH_3CN , reflux, 10h. f: $CH_2=CHOEt$, PTS(cat.), CH_2Cl_2 , $30^{\circ}C$, 10h. g: **11a→12a**: NaH, MeOH(cat.), C_6H_6 , reflux, 6h. **11b→12b**: $(Me_3Si)_2NNa$, DME, $100^{\circ}C$, 5.5h. h: DCC, CF_3COOH , DMSO, C_6H_6 , Py, rt, 8h. i: $Mn(OAc)_3 \cdot H_2O$, $Cu(OAc)_2 \cdot H_2O$, HOAc, rt, 8h. j: Ac_2O , Py, rt, 24h. k: HOAc-MeOH- $H_2O(2:1:1)$, $90^{\circ}C$, 2h. 1: 2N KOH, MeOH, $60^{\circ}C$, 2h. m: N-hydroxy-2-pyridinethinone **17**, DCC, DMAP, THF or CH_2Cl_2 , rt, 2d; then t-BuSH, hv, 2-3h. n: NaH, DMSO; then (CH3)_3SI, THF, rt, 20h. o: $AlClH_2$, THF, reflux, 5h.

Pd^O mediated alkylization of $12a(Pd(PPh_3)_4, As_2O_3)$, we attempted to oxidize 12a with DCC/DMSO/CF₃COOH into the corresponding α , β -unsaturated aldehyde in order to conduct a subsequent intromolecular Michael addition. Quite unexpectedly, 12a preferred an intromolecular ester exchange to form the 10-membered macrolacton 13 instead of undergoing the desired oxidation into the corresponding aldehyde.

We then turned to apply the recently developed cyclization process of alkenes^[9] which might be more efficient in strained molecules. It involved a manganes(III)-based oxidative free radical cyclization, which was initiated by oxidation of β -carbonyl compound with Mn(OAc)₃·H₂O/Cu(OAc)₂·H₂O in situ. Fortunately, in our case, treatment of 12 with Mn(OAc)₃·H₂O/Cu(OAc)₂·H₂O in HOAc readily effected the expected cyclization in almost quantitative yield. After removal of the N_a-protecting group in 14b, 14c by heating in HOAc:

MeOH:H2O=2:1:1, 15a and 15b were, respectively, obtained in good yield.

Many attempts to remove the bridge-head carboxylic group by conventional methods^[12], have all failed. However, we finally found that Barton's decarboxylation method^[11] proved effective in our case. Treatment of 16 with DCC/DMAP/17 in excess dry THF or CH_2Cl_2 , followed by the addition of t-BuSH and photolysis with a 300W tungsten slide lamp for several hours afforded 18 in 55% yield, $[\sigma]_p+11.7^{\circ}(c0.6in CHCl_3)^{[10]}$.

At this stage all what we needed to do was to homologate the carbonyl group of 18 into a hydroxymethyl function in a stereospecific manner. While this carbonyl appeared to resist conventional Wittig reagents, treatment of 18 with $(CH_3)_2S=CH_2/DMSO/THF/r.t.$, followed by reduction of the resulting epoxide 19 with AlH_2Cl/THF regio- and stereoseletively gave rise to N_a -methyl- Δ^{18} -iso-koumidine $3^{[13]}$.

Since N_a-methyl ajmaline has been recently converted into koumidine by Sakai^[4], we believe that further elaboration of 3 would lead to Δ^{18} -iso-koumidine and eventully to the total synthesis of koumine.

References and Notes

 A part of our results was reported on the "2nd Sino-French Symposium on the Chemistry of Natural Products", Sept. 20-22, 1988, La Londe les Maures, France.

- 2. P.Magnus, B.Mugrage, M.DeLuca, G.A.Cain, J. Am. Chem. Soc., 1989, 111, 786.
- 3. Z.J.Liu, Q.S.Yu, Youji Huaxue(Chin. J. Org. Chem.), 1986, 1, 36; Acta Chim. Sinica, 1987, 2, 181.
- 4. H.Takayama, M.Kitajima, S.Wongseripipatana, S.Sakai, <u>J. Chem. Soc., Chem.</u> Commun., in press(private communication with Prof. Sakai).
- 5. Z.J.Liu, F.Xu, to be published.
- H.Peter, M.Brugger, J.Schreiber, A.Eschenmoser, <u>Helv. Chim. Acta</u>, 1963, 46, 577.
- 7. The reduction 8→9 yielded within the limits of HPTLC and n.m.r. detection a single epimer, of which the C-3 configuration was determined as S (C-3H cis to C-5H) by applying the known ¹³C NMR method^[8] on its stable derivative 11a. ¹³C NMR specturm of 11a: δ(CDC1₃):20.94(CH₃), 21.23(CH₂, 4-C), 28.94(CH₂, 15-C), 50.95(CH, 1-C), 51.64(OCH₃), 51.93(OCH₃), 55.64 (CH, 3-C), 59.40(CH₂, 18-C), 60.13(CH₂, 21-C), 106.70(C, 5-C), 110.89(CH, 13-C), 118.11(CH, 10-C), 119.33(CH, 11-C), 121.67(CH, 12-C), 126.85(C, 7-C), 131.39(CH, 19-C), 133.14(CH, 20-C), 136.17(2C, 6,8-C), 170.82(C=O), 173.65(C=O), 174.63(C=O)ppm.
- 8.(a) F.Ungemach, M.Dipierro, R.Veber, J.P.Cook, <u>J. Org. Chem.</u>, 1981, 46, 164.
 (b) P.D.Bailly, S.P.Hollinshead, Heterocycles, 1987, 26, 389.
- 9.(a) B.B.Snider, M.A.Pombroski, J. Org. Chem., 1987, 52, 5487.
 - (b) B.B.Snider, J.J.Patrica, S.A.Kates, ibid, 1988, 53, 2137.
 - (c) J.R.Peterson, R.S.Egler, D.B.Horsley, T.J.Winter, <u>Tetrahedron Lett.</u>, 1987, 28, 6109.
- 10. 18: IR(KC1): $1725 cm^{-1}$. ¹H NMR(CDCl₃):1.79(1H, m, 1-Hax), 2.32(2H, m, 1-Heq), 2.46(1H, dxd, $J_1=6Hz$, $J_2=13Hz$, 4-Hax), 2.68(1H, dxd, $J_1=8Hz$, $J_2=13Hz$, 4-Heq), 2.78(2H, m, 2,3-H), 2.94(1H,dxd, $J_1=6.2Hz$, $J_2=15.5Hz$, 7-Hax), 3.31(1H, d(d), $J_1=1Hz$, $J_2=15.5Hz$, 7-Heq), 3.46(1H, m, 12b-H), 3.70(1H, d(d), $J_1=1Hz$, $J_2=6.2Hz$, 6-H), 5.14(2H, m, 15-H), 5.62(1H, m, 14-H), 7.15(3H, m, 9,10,11-H), 7.49(1H, m, 8-H), 8.34(1H, s, 12-H)ppm.
- 11. (a) D.H.R.Barton, D. Chich, W.B. Motheruell, J. Chem. Soc., Chem. Commun., 1983, 939.
 - (b) D.H.R.Barton, S.Z.Zard, Pure and Appld. Chem., 1986, 675.
 - (c) D.H.R.Barton, D.Bridon, I.F.Picot, S.Z.Zard, <u>Tetrahedron</u>, 1987, 43, 2733.
 - (d) D.H.R.Barton, B.Lacher, B.Misterkiewicz, S.Z.Zard, <u>ibid</u>, 1988, 44, 1153.
- 12.(a) A.P.Krapcho, Synthesis, 1982, 805, 893.
 - (b) N.Yoneda, Chem. Pharm. Bull., 1965, 13, 1231.
- 13. 3: IR(CHCl₃): 3400cm⁻¹. MS:308(M[±]), 290, 183(base peak).
- 14. All new compounds were characterized by ¹H NMR, ¹³C NMR, IR, HRMS and/or microanalysis.

(Received in Japan 28 March 1989)